
[Joshi, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [713]

IJESRT
INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH

TECHNOLOGY

Survey on Efficient Data Integrity Techniques for Distributed Cloud Storage
Mr.Divyesh K Joshi*, Prof. Miss Devangini Dave, Prof. Kishori Shekoka

Sigma Institute of Engineering, Bakrol,Vadodara, India

Abstract
Recent advances have given rise to the popularityand success of cloud computing. Cloud storage enables users to

remotely store their data and enjoy the on-demand high quality cloud applications without the burden of local

hardware and software management. It moves the application software and databases to the centralized large data

centres, where the management of the data and services may not be fully trustworthy. This unique paradigm brings

about many new security challenges. To protect outsourced data in cloud storage against corruptions, enabling

integrity protection, fault tolerance, and efficient recovery for cloud storage becomes critical. Therefore, we study

the problem of remotely checking the integrity of regenerating-coded data against corruptions under a real-life cloud

storage setting. In this paper surveys the various protocols to check cloud data integrity and compares them based on

the integrity requirements. Finally we compared different remote checking integrity techniques: Replication,

Erasure codes (Reed Solomon Code) and regenerating code for various file operations.

Keywords: cloud computing, remote data checking, security,integrity, regenerating code, FMSR-DIP.

 Introduction
Cloud computing defined as “A large-scale

distributed computing paradigm that is driven by

economies of scale, in which a pool of abstracted,

virtualized, dynamically, scalable, managed

computing power, storage, platforms, and services

are delivered on demand to external customers over

theInternet.” Cloud storage offers an on-demand data

outsourcing service model, and is gaining popularity

due to its elasticity and low maintenance cost.

One major use of cloud storage is long-term archival,

which represents a workload that is written once and

rarely read. While the stored data is rarely read, it

remains necessary to ensure its integrity for disaster

recovery or compliance with legal requirements. The

notion of integrity in cloud computing concerns are

both data integrity and computation integrity. Data

integrity implies that data should be honestly stored

on cloud servers, and any violations (e.g., data is lost,

altered, or compromised) are to be detected.

Computation integrity implies the notion that

programs areexecuted without being distorted by

malware, cloud providers, or other malicious users,

and that any incorrect computing will be detected. So

it is desirable to enable cloud clients to verify the

integrity of their outsourced data in the cloud, in case

their data has been accidentally corrupted or

maliciously compromised by insider/outsider

Byzantine attacks.

To meet the requirements of the massive volume of

storage, erasure codes have gained a significant

amount of attention in cloud systems.

Background
Security in Cloud Computing
The popularity of Cloud Computing is mainly due to

the fact that many enterprise applications and data are

moving into cloud platforms; however, lack of

security is the major barrier for cloud adoption [1].

According to a recent survey by International Data

Corporation (IDC), 87.5% of the masses belonging to

varied levels starting from IT executives to CEOs

have said that security is the top most challenge to be

dealt with in every cloud service. Many of the threats

found in existing platforms. Out of them, the Security

Threat is considered to be of High Risk.

The major security aspect is Confidentiality,

Integrity, Authentication, Authorization, Non-

repudiation and Availability which are further

explained below:

Confidentiality is the process of making sure that the

data remains private, confidential and restrictedfrom

unauthorized users [2]. Data encryption is one of the

most popular options of security before pushing the

http://www.ijesrt.com/

[Joshi, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [714]

data into cloud.

Integrity is the guarantee by which the data is

protected from accidental or deliberate

(malicious)modification. Hashing techniques, digital

signatures and message authentication codes are used

to preserve data integrity [3]. Integrity problems are

in big scale due to the multi-tenancy characteristic of

cloud [4].

Authentication is the mechanism by which the

systems may securely identify their users.

Authorizationdetermines the level of access to system

resources attributed to a particular authenticated user

[5].

Non-repudiation is an extension to the identification

and authentication service. It is used to ensure thatthe

messages sent are properly received and

acknowledgements are sent back to the sender. In

other words, establishing a two way communication

between a sender and a receiver.

Availability ensures that an organization has its full

set of computing resources available and usable at all

times for its real users [8]. In this paper we will

discuss about the integrity of data in cloud storage.

Data integrity proving schemes
Juels and Kaliski [8]. Proposed a scheme called Proof

of Retrievability (POR). Proof of retrievability means

verify the data stored by user at remote storage in the

cloud is not modified by the cloud. POR for huge size

of files named as sentinels. The main role of sentinels

is cloud needs to access only a small portion of the

file (F) instead of accessing entire file. Sravan and

Saxena [7].Proposed a Schematic view of a proof of

retrievability based on inserting random sentinels in

the data file.

Provable Data Possession (PDP)

Definition: A PDP scheme checks that a file, which

consists of a collection of n blocks, is retained by a

remote cloud server. The data owner processes the

information file to generate some metadata to store it

locally. The file is then sent to the server, and the

owner deletes the native copy of the file. The owner

verifies the possession of file in using challenge

response protocol. This technique is used by clients

to check the integrity of the data and to periodically

check their data that is stored on the cloud server. So

this technique ensures server security to the client.

Naive Method:
The main idea behind this algorithm is to compare

the data. In this method client will compute the hash

value for the file F and having key K (i.e. (K, F)) and

subsequently it will send the file F to the server.

Clients are having different collection of keys and

hash values so it can check multiple check on the file

F. Whenever client wants to check the file it release

key K and sends it to the server, which is then asked

to recomputed the hash value, based on F and K.

Now server will reply back to the client with hash

value for comparison.

Limitation
This method gives the strong proof that server is

having the original file F.But this method has high

overhead as every time hashing process is run over

the entire file. It is having very high computation

cost.

Proof of Retrivability (POR):

Juels and Kaliski [8]. Proposed a scheme called Proof

of Retrievability. Proof of retrievability means Verify

the data stored by user at remote storage in the cloud

is not modified by the cloud. POR for huge size of

files named as sentinels. The main role of sentinels is

cloud needs to access only a small portion of the file

(F) instead of.

In this scheme data are divided into number of block

as shown in figure 2. This technique uses theauditing

protocol when solving the problem of integrity.

Fig 1-A data file with 6 blocks

Related work
There are various study performed to check the

integrity of data, which are typical in long-term

archival storage systems. This problem is first

considered by Juels et al. [8]. And Ateniese et al. [9].,

giving rise to the similar notions proof of

retrievability [8]. (POR) and proof of data possession

(PDP) [9]., respectively, which are proposed to verify

the integrity of a large file by spot-checking only a

fraction of the file via various cryptographic

primitives. The basic POR scheme [8]. Embeds a set

http://www.ijesrt.com/

[Joshi, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [715]

of pseudorandom blocks into an encrypted file stored

on the server, and the client can check if the server

keeps the pseudorandom blocks later on. Error

correcting codes are also included in the stored file to

allow recovery of a small amount of errors within a

file. However, the number of checks that the client

can issue is limited by the number of the embedded

random blocks. On the other hand, PDP [9]. Allows

the client to keep a small amount of metadata. The

client can then challenge the server against a set of

random file blocks to see if the server returns the

proofs that match the metadata on the client side.

These both schemes are single server storage scheme.

So in these methods whole the data are stored on a

single server in which single-point-failure [11]. And

vendor-lock-ins [10]. Problems are arises. To

overcome these problems one possible solution is to

stripe data across multiple servers. Thus, to repair a

failed server, we can (i) read data from other

surviving servers, (ii) reconstruct the corrupted data

of the failed server, and (iii) write the reconstructed

data to a new server. MR-PDP [13]. And HAIL [12].

Extend integrity checks to a multi-server setting

using replication and erasure coding, respectively. In

erasure coding based system (e.g. Reed Solomon

Code) requires less storage overhead compare to

Replication based system [14]. For the same fault-

tolerance level.

A. Replication Based system

Ensuring reliability requires the introduction of

redundancy. The simplest form of redundancy is

replication, which is adopted in many practical

storage systems. In which k identical copies of each

data object are kept at each instant by system

members. Figure 1 shows an example of replication

based system.

 S3 fails

Fig. 1 Replication based distributed system

Simple replication offers one avenue to higher-

assurance data archiving. Only single copy of file is

required to repair any node. For example if any node

fails then simply copy the replica of that file from

healthy node and store it on new node. But it requires

often unnecessarily and unsustainably high expense.

The storage cost for replication based system is very

high.

B. Erasure Coding Based (Reed Solomon Code)

system

As a generalization of replication, erasure coding

offers better storage efficiency. For instance, we can

divide a file of size M into k pieces (to be called

fragments), each of size M/k, encode them into n

encoded fragments (of the same size) using an (n, k)

maximum distance separable (MDS) code, and store

them at n nodes. Then, the original file can be

recovered from any set of k coded fragments. This

performance is optimal in terms of the redundancy–

reliability trade-off because k pieces, each of size

M/k, provide the minimum data for recovering the

file, which is of size M. Example of (4, 2) Erasure

coding based system is shown in figure 2. In which

repair traffic of the system if M which is same as our

file size.

(n, k) MDS property: any k out of n servers can

rebuild original file

Fig. 2 Reed Solomon Erasure Coding

C. Regenerating Coding Based system

For an erasure coded system, a common practice to

repair from a single node failure is for a new node to

reconstruct the whole encoded data object to generate

just one encoded block. This is clearly an inefficient

way of regeneration, since the network bandwidth is

often a critical resource. This has motivated the

development of family of codes, referred as

regenerating codes, designed to carry out the

regeneration efficiently. Regenerating codes [15].

Have been proposed to minimize this repair traffic

(i.e., the amount of data being read from surviving

servers). In essence, they achieve this by not reading

and reconstructing the whole file during repair as in

traditional erasure codes, but instead reading a set of

chunks smaller than the original file from other

surviving servers and reconstructing only the lost (or

corrupted) data chunks. Regenerating codes are

http://www.ijesrt.com/

[Joshi, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [716]

constructed systematically such that the source

symbols are stored in k nodes called as data nodes,

the remaining n-k nodes are called as parity nodes

which contain symbols obtained through suitable

encoding operation. Such systematic codes, where

the data nodes are regenerated exactly but only

functionally equivalent form of parity nodes are

regenerated. Example of (4, 2) Regenerating code is

shown in figure 3. In which repair traffic is 0.75M

which is less than the Reed Solomon Erasure coding

based system.

Fig. 3 Regenerating Code based system

Preliminaries
A. Functional Minimum Storage Regenerating Code

FMSR [16].Belongs to Maximum Distance

Separable (MDS) codes. An MDS code is defined

by the parameters (n, k), where k < n. It encodes a

file F of size |F| into n pieces of size |F|/k each. An

(n, k)-MDS code states that the original file can be

reconstructed from any k out of n pieces (i.e., the

total size of data required is |F|). An extra feature of

FMSR is that a specific piece can be reconstructed

from data of size less than |F|. FMSR is built on

regenerating codes, which minimize the repair

bandwidth while preserving the MDS property

based on the concept of network coding.

FMSR codes have three design properties, which

we elaborate below.

1. Preserve the fault tolerance and storage

efficiency of MDS Codes

MDS codes are defined by two parameters n and k

(k < n). An (n, k)-MDS code divides a file of size

M into k pieces of size M/k each, and encodes them

into n pieces such that any k out of n encoded

pieces suffice to recover the original file. By storing

the n encoded pieces over n nodes, a storage system

can tolerate at most n − k node failures. An

example of MDS codes is Reed-Solomon codes

[14].

[1] FMSR codes minimize the repair bandwidth

If a node fails, we must reconstruct the lost data of

the failed node to preserve fault tolerance

Reed-Solomon codes reads k pieces from any k

surviving nodes to restore the original file (by the

design of MDS codes). Clearly, the amount of data

read is the file size M. FMSR codes seek to read less

than M units of data to reconstruct the lost data.

FMSR codes are designed to match the minimum

storage point of regenerating codes when repairing a

node failure, while having each node store M/k units

of data as in Reed-Solomon codes. To repair a failed

node in FMSR codes, each surviving node transfers

data of

size

M

Units or equivalently, a size of one parity chunk.

k(n-k)

In a special case of n = 4 and k = 2, the repair

bandwidth is 0.75M, i.e., 25% less than that of

conventional repair of Reed-Solomon codes. In

general, the repair bandwidth of FMSR

codes for k = n − 2 is M (n-1) , and its saving compared to

 2(n-2)

RAID-6 codes [17]. (Which are also double-fault

tolerant) is up to 50% if n is large.

Property 3: FMSR codes use uncoded repair

During repair, each surviving node under FMSR

codes transfers one parity chunk, without any

encoding operations. This also minimizes the amount

of data read from disk.

B. NCCloud

NCCloud (formerly known as CloudNCFS) [18].is a

proof-of-concept prototype of a network-coding-

based file system that aims at providing fault

tolerance and reducing data repair cost when storing

files using multiple-cloud storage (or any other kinds

of raw storage devices). NCCloud is a proxy-based

file system that interconnects multiple (cloud) storage

nodes. It can be mounted as a directory on Linux, and

file uploading/downloading are done by copying files

to/from the mounted directory. NCCloud is built on

FUSE, an open-source, programmable user-space file

system that provides application programmable

interfaces (APIs) for file system operations. From the

point of view of user applications, NCCloud presents

a file system layer that transparently stripes data

across storage nodes. Network codes for storage

http://www.ijesrt.com/

[Joshi, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [717]

repairrequire that storage nodes encode the stored

data during the repair process. However, this may not

be feasible for some storage systems where nodes

only provide the basic I/O functionalities but do not

have the encoding capability. Our work is to adapt

the benefits of network codes in the storage repair of

a practical storage setting, by relaxing the encoding

requirement of storage nodes. NCCloud supports a

variety of coding schemes, in particular the

Functional Minimum Storage Regenerating (F-MSR)

codes. Compared to traditional optimal erasure codes

(e.g., Reed-Solomon), FMSR codes maintains the

same storage overhead under the same data

redundancy level, but uses less repair traffic during

the recovery of a single failed storage node. NCCloud

realizes regenerating codes in a practical cloud

storage system that does not require any

encoding/decoding intelligence on the cloud storage

nodes.

Problems in existing system
As it is noted in the different techniques of

checking integrity of cloud storage data in analysis

part there are some drawbacks in the existing

system, which are like not secure against byzantine

mobile adversary. Mobile Byzantine means that the

adversary compromises a subset of servers in

different time epochs (i.e., mobile) and exhibits

arbitrary behaviours on the data stored in the

compromised servers (i.e., Byzantine). To ensure

file availability, we assume that the adversary can

compromise and corrupt data in at most n−k out of

the n servers in any epoch, subject to the (n, k)-

MDS fault tolerance requirement. At the end of

each epoch, the client can ask for

Randomly chosen parts of remotely stored data and

run a probabilistic checking protocol to verify the

data integrity. Servers under the control of the

adversary may or may not correctly return data

requested by the client. If corruption is detected, then

the client may trigger the repair phase to repair

corrupted data. Instead of performing whole-file

checking,which incurs a substantial transfer

overhead, it is only feasible for the client to randomly

sample data for integrity checking.

The adversary may corrupt a small portion of data

within the Error-correcting capability in each epoch,

but the level of Corruption can render the errors

unrecoverable after several Epochs if they are not

spotted early. This leads to creeping Corruption [12].

Thus, it is necessary that the client can Quickly spot

the corrupted data without accessing the whole

File.

Comparative study of PDP techniques
To analyse all the provable data techniques, builds the table below, in which cover all that parameters on

which the different schemes can be compared possession.

http://www.ijesrt.com/

[Joshi, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [718]

Table1.0 Comparative study of PDP techniques

Conclusions
Though Cloud computing offers great potential to

improve productivity and reduces costs. It also

imposes many new security risks which are related to

cloud storage. As cloud is mainly used for the storage

of the data, data integrity is the main issue of the

client side because after uploading data to the server,

client will lost the control of the data. There are so

many techniques available in the literature, out of

which we have analyze Provable Data Possession

(PDP) and Proof of retrievability (POR), This paper

facilitate the client in getting a proof of integrity of

the data which He/She wishes to store in the cloud

storage servers with bare minimum costs and efforts.

The scheme used in this paper reduce the

computational and storage overhead ofthe client as

well as to minimize the computational overhead of

the cloud storage server. This also minimized the size

of the proof of data Integrity so as to reduce the

network bandwidth consumption. Seeing

thepopularity of outsourcing archival storage to the

cloud, it is desirable to enable clients to verify the

integrity of their data in the cloud. We study design

of data integrity protection (DIP) scheme for

functional minimum storage regenerating (FMSR)

codes under a multi-server setting. This DIP scheme

preserves the fault tolerance and repair traffic saving

properties of FMSR. And also it allows clients to

remotely verify the integrity of random subsets of

long term.

We will evaluate the running time under various

parameter choices. We will compare the three

different techniques for checking integrity and fault

tolerance of system and also evaluate the overhead of

DIP scheme. Our scheme will preserves the fault

tolerance and also less repair traffic.

In addition, we may exploit certain inherent

properties of such combination to further reduce the

 [8]. [19]. [20]. [9]. [21]. [22]. [23].

DATA POSSESSION

no No yes yes yes yes yes

SUPPORT

SAMPLING
no No no yes yes yes yes

TYPE OF

GUARANTEE

Deterministic Probabilistic

SERVER

BLOCK ACCESS
O(n) O(logn) O(n) O(1) O(logn) O(logn) O(logn

SERVER

COMPUTATION

OVERHEAD

O(n) O(1) O(1) O(1) O(logn) O(logn) O(logn

CLIENT

COMPUTATION

OVERHEAD

O(1) O(1) O(1) O(1) O(logn) O(logn) O(logn

COMMUNICATION

OVERHEAD

O(n) O(logn) O(1) O(1) O(logn) O(logn) O(logn

STORAGE COST

O(1) O(1) O(n) O(1) O(n) O(1) O(1)

SUPPORT DYNAMIC

INTEGRITY

No No No No yes No Yes

SUPPORTING

PUBLIC

AUDITABILITY

No No No yes No yes Yes

DATA RECOVERY

No No No No No No No

http://www.ijesrt.com/

[Joshi, 3(11): November, 2014] ISSN: 2277-9655

 Scientific Journal Impact Factor: 3.449

 (ISRA), Impact Factor: 2.114

http: // www.ijesrt.com © International Journal of Engineering Sciences & Research Technology

 [719]

computational overhead, and we pose this issue as

our extended work. On the other hand, our modular

approach allows us to flexibly enable DIP on demand

in real deployment.

References
1. Bansidhar Joshi, A. Santhana Vijayan,

Bineet KumarJoshi,“Securing Cloud

computing Environment against DDoS

2. Ramgovind S, Eloff MM and Smith E, “The

Management of Security in Cloud

Computing”, IEEE, 2010.

3. Wentao Liu, “Research on Cloud

Computing Security Problem and Strategy”,

IEEE, 2012, pp.1216-1219.

4. Nitin Singh Chauhan and Ashutosh Saxena.

“Energy Analysis of Security for Cloud

Application.

5. Rohit Bhadauria, Rituparna Chaki, Nabendu

Chaki and Sugata Sanyal, “A Survey on

Security Issues in Cloud Computing”, IEEE

2010.

6. Xiaojun Yu and Qiaoyan Wen “A view

about cloud data security from data life

cycle”, IEEE 2010.

7. Saxena, Sravan Kumar and Ashutosh,”Data

Integrity Proofs in Cloud Storages”, IEEE

2011.

8. A. Juels and B. Kaliski. PORs: Proofs of

retrievability for large files. In Proc. ACM

CCS, pages 584–597, 2007.

9. G. Ateniese, R. Burns, R. Curtmola, J.

Herring, O. Khan, L. Kissner, Z. Peterson,

and D. Song. Remote Data Checking Using

Provable Data Possession. ACM Trans. on

Information and System Security, May

2011.

10. H.Abu-Libdeh, L. rincehouse, and H.

Weatherspoon. RACS: A Case for Cloud

Storage Diversity. In Proc. of ACM SoCC,

2010.

11. M. Armbrust, A. Fox, R. Griffith, A. D.

Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M.

Zaharia. A view of cloud computing.

Communications of the ACM, 53(4):50– 58,

2010.

12. K. Bowers, A. Juels, and A. Oprea. HAIL: A

High-Availability and Integrity Layer for

Cloud Storage. In Proc. of ACM CCS, 2009.

13. R. Li, J. Lin, and P. Lee. CORE:

Augmenting Regenerating-Coding-Based

Recovery for Single and Concurrent Failures

in Distributed Storage Systems. arXiv,

preprint arXiv:1302.3344, 2013.

14. I. Reed and G. Solomon. Polynomial Codes

over Certain Finite Fields. Journal of the

Society for Industrial and Applied

Mathematics, 8(2):300–304, 1960.

15. J. Breckling, Ed., the Analysis of Directional

Time Series: Applications to Wind Speed

and Direction, ser. Lecture Notes in

Statistics. Berlin, Germany: Springer, 1989,

vol. 61. Y. Hu, P. P. C. Lee, and K. W.

Shum. Analysis and Construction of

Functional Regenerating Codes with

Uncoded Repair for Distributed Storage

Systems. In Proc. of IEEE INFOCOM, Apr

2013.

16. N Cao, S Yu, Z Yang, W Lou, YT Hou. LT

codes-based secure and reliable cloud

storage service- INFOCOM, 2012

Proceeding IEEE, 2012.

17. Y. Hu, H. Chen, P. Lee,and Y. Tang.

NCCloud: Applying Network Coding for the

Storage Repair in a Cloud-of-Clouds. In

Proc. of USENIX FAST, 2012.

18. Y. Deswarte and J. Quisquater, “How to

Trust Files Stored on Untrusted

Servers,”2002.

19. F. Sebe, A. Martinez-Balleste, Y. Deswarte,

J. Domingo-Ferrer, and J.-J. Quisquater.

“Time- bounded remote file integrity

checking.” Technical Report 04429, LAAS,

July 2004.

20. C. Erway, A. Küpçü, C. Papamanthou, and

R. Tamassia, “Dynamic provable data

possession,” Proceedings of the 16thACM

conference on Computer and

communications security - CCS ’09, p. 213,

2009.

21. Q. Wang, S. Member, C. Wang, and K. Ren,

“Enabling Public Auditability and Data

Dynamics for Storage Security in Cloud

Computing,” pp. 1–13.-2009.

22. S. Ni-Na and Z. Hai-Yan, “On Providing

Integrity for Dynamic Data Based on the

Third-party Verifier in Cloud Computing,”

2011 First International Conference on

Instrumentation Measurement,Computer

Communication and Control, pp. 521–524,

Oct. 2011.

http://www.ijesrt.com/

